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1. INTRODUCTION
Scientific applications are increasingly reliant on large dis-
tributed workflows to create and analyze vast amounts of
data [1, 3]. However, it is becoming more challenging to
model application performance due to the large number of
variables that affect overall performance. To reduce the time
needed to establish a performance model, we explore a set
of variable selection techniques to find the best subset of
variables for building the performance model.

As a case study, we examined the Palomar Transient Factory
(PTF) application, which processes large amounts of astron-
omy observations through a lengthy processing pipeline [2].
Our prediction task is to use variables about the data ob-
jects plus the execution time of the first few steps of the
pipeline to forecast the overall execution time of the entire
workflow.

2. METHODS
We established a testing baseline using exhaustive variable
selection, which finds the optimal subset, and tested sev-
eral standard variable selection methods, including Recur-
sive Feature Elimination, Univariate F-Test, and Gini Fea-
ture Importance.
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Figure 1: Overview of the variable selection process

As a greedy selection approach, we implemented Sequential
Backward Selection (SBS), which starts with the fulls set
of variables and removes one variable at each iteration. We
selected the subset with the best prediction accuracy to de-
termine the best variable to remove. Apache Spark was used
to parallelize subset testing at each iteration.

We also combined SBS with correlation-based grouping to
take advantage of multiple correlated variables to further
improve the performance of SBS. We eliminate redundant
variables quickly by grouping highly correlated variables and
selecting the best representative variable from each group.
The selected variables are then reduced using the SBS. Cor-
relation grouping was also parallelized across the correlation
groups. Figure 1 shows the steps of the variable selection
process.

3. RESULTS
Our SBS and SFS implementations performed better and
more consistently than existing variable selection implemen-
tations. Parallelizing SBS resulted in a significant runtime
improvement from about 18 hours (65020 seconds) to less
than an hour (2727 seconds). We were unable to compare
SBS against exhaustive selection on the full variable set due
to runtime limitations. However, by testing SBS on a smaller
10-variable set, we found that SBS achieved similar predic-
tion error to exhaustive search.

Figure 2 shows the results of testing SBS with the full vari-
able set. There is a very visible trend as variables were
removed. The decreases in error represent noisy variables
being removed, while the flat segments represent redundant
variables. After the optimal subset is reached, the error
grows rapidly due to key variables being removed, leaving
insufficient information to make an accurate prediction.

Figure 3 illustrates the rapid decrease in the training time
relative to the loss in the prediction accuracy. There was
little loss in the prediction accuracy until the subset reached
extremely small sizes.

Our experiments showed that correlation grouping prepro-
cessing returned results comparable to standard SBS. Fig-
ure 4 shows the selection process for both methods. The
changes in error follow similar patterns, with the plot for
correlation grouping being more condensed. At a correla-
tion threshold of 0.8, grouped SBS took only 888 seconds to
run as opposed to 2727 seconds for regular SBS.
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Figure 2: Variable selection process for Sequential
Backward Selection
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Figure 3: Change in prediction error compared to
training time
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Figure 4: Comparison of SBS with correlation
grouping and standard SBS

In order to evaluate overfitting in the variable selection, we
used a separate test set to validate our variable subset. The
selection trends of of the two datasets are the same, showing
that the selected variables were not overfit to the training
data.

4. CONCLUSION
Variable selection methods were shown to be effective in re-
ducing model training time and eliminating noisy variables
on the PTF analysis pipeline measurement data. Sequen-
tial Backward Selection proved to be an effective variable
selection method for this measurement dataset as it found
a subset comparable to exhaustive selection in significantly
shorter time.

We developed a framework to quickly select variables from
the PTF data to optimize the prediction accuracy. Due to
the high levels of correlation among variables in the dataset,
correlation-based grouping in our method was able to further
improve the performance of the SBS. In this experiment, it
was able to identify the same subset as the SBS in just one-
third of the computation time.

By taking advantage of high performance computing re-
sources and variable correlations, we were able to select a
variable subset that can result in accurate performance pre-
diction within significantly shorter computation time than
existing methods.
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